Skip to main content
Many teams start with Dagster for data orchestration—but soon encounter challenges with data engineering workflows, visual debugging, and developer productivity. Mage Pro offers a modern alternative: visual pipelines, built-in data integration, AI-assisted development, and UI-based deployment management—all within a unified platform for your data workflows.

Why migrate from Dagster to Mage Pro?

Dagster is a powerful orchestration tool focused on data assets, but it wasn’t designed for:
  • Visual pipeline development and debugging
  • Native data integration (ETL/ELT workflows)
  • Mixing SQL and Python naturally in the same pipeline
  • Streaming or event-driven data processing
  • Built-in data previews and interactive development
  • AI-powered pipeline development
Mage Pro is built to solve these challenges out-of-the-box, combining orchestration with data engineering capabilities in a modern, developer-friendly platform.

Mage Pro vs Dagster: Benefits Overview

Mage Pro goes far beyond orchestration. It’s a unified platform for data integration, SQL modeling (native dbt blocks and Mage SQL blocks), AI-powered transformation, and streaming pipelines — all within a collaborative, Git-native workspace with UI-based deployment management.
CapabilityDagsterMage Pro
Visual pipeline UI⚠️ Code-only (Python decorators)✅ Hybrid UI: drag-and-drop DAG builder + notebook-style coding experience
Built-in lineage✅ Asset lineage✅ Native, auto-generated data lineage
AI assistance✅ Generate, optimize, fix, and explain code with AI Sidekick
Multi-language support⚠️ Python only✅ SQL, Python, R, streaming, APIs
Data integration pipelines⚠️ Custom Python or 3rd-party tools✅ 200+ native connectors for databases, files, APIs
SQL block support⚠️ Requires custom ops✅ Native dbt blocks, or Mage SQL block, preview, and test support
Incremental modeling⚠️ Requires custom logic✅ Native in SQL block config and Data integration pipeline
Data previews & interactive runs⚠️ Limited✅ Preview data at every step, run blocks independently
Environment isolation⚠️ Requires separate deployments✅ Per-workspace configs, secrets, variables
Git integration⚠️ Manual sync✅ Git-backed version control and CI/CD, UI based Deployment App
Scheduling & triggers✅ Cron + sensors✅ Cron, events, file triggers, webhooks, API
Secrets management⚠️ Requires Dagster Cloud or external config✅ Support both built-in secret manager, or external secret manager
RBAC & SSO⚠️ Dagster Cloud only✅ Built-in, enterprise-ready
Observability & logging✅ Dagster UI✅ Native UI for logs, metrics, traces, lineage
Scalability⚠️ Manual worker configuration✅ Auto-scaled executors on K8s or Docker
Streaming support✅ Kafka, CDC, real-time ingestion
Team collaboration⚠️ Limited multi-tenancy✅ Workspaces, permissions, activity logs

Step-by-Step Migration Instructions

  1. Inventory your Dagster assets and jobs
    • List your active assets, ops, and jobs:
      • @asset and @op decorators
      • Dagster resources (storage, infrastructure)
      • Dependencies and scheduling logic
      • Partitions and materializations
    • Identify data sources, transformations, and destinations
  2. Create a workspace in Mage Pro
    • Visit Mage Pro and sign in
    • (Optional) Connect your Git repo for version control
    • Set up your deployment configuration using the Deployment App in the UI
  3. Recreate your Dagster assets as Mage pipelines
    • Each Dagster job → 1 Mage pipeline
    • Each Dagster asset/op → 1 Mage block:
      • @asset or @op with data loading → Data loader block
      • @asset or @op with transformations → Transformer block (Python or SQL)
      • @asset or @op with data writing → Data exporter block
      • Dagster resources → Data loader/exporter blocks or pipeline configuration
    • Define dependencies visually using the UI (no decorators needed)
  4. Configure scheduling and triggers
    • Dagster schedules → Mage triggers (cron, interval, or event-based)
    • Dagster sensors → Mage event triggers or file triggers
    • Configure schedules via UI or YAML
  5. Run and validate pipelines
    • Use Mage Pro’s UI to test individual blocks
    • Preview dataframes, logs, and outputs at each step
    • Compare results to your Dagster jobs
  6. Monitor, scale, and automate
    • Monitor pipeline runs and resource usage
    • Set alerts and retry rules
    • Mage Pro autoscaling handles executor resources automatically on Kubernetes or Docker
    • Use the Deployment App to manage deployments and rollbacks

Mapping Dagster Concepts to Mage Pro

Assets & Jobs → Pipelines

Dagster:
from dagster import asset, job, op

@asset
def raw_data():
    return pd.read_csv("data.csv")

@asset
def transformed_data(raw_data):
    return raw_data.dropna()

@job
def my_etl_job():
    transformed_data(raw_data())
Mage Pro:
  • Create a new pipeline in the UI
  • Each asset/op becomes a block (data loader, transformer, or data exporter)
  • Dependencies are defined by connecting blocks in the UI
  • No need for explicit job definitions—pipeline structure defines execution

Assets & Ops → Blocks

Dagster:
@asset
def extract_data():
    return pd.read_csv("data.csv")

@op
def transform_data(context, df):
    return df.dropna()

@asset
def load_data(transformed_data):
    transformed_data.to_sql("table", engine)
Mage Pro:
  • extract_dataData loader block (Python or connector)
  • transform_dataTransformer block (Python, SQL, or dbt block)
  • load_dataData exporter block (Python or connector)

Dagster Resources → Mage Blocks

Dagster Resource TypeMage Pro Equivalent
S3Resource, GCSResourceData loader/exporter blocks with native S3/GCS connectors
PostgresResource, SnowflakeResourceData loader/exporter blocks with database connectors
DockerResource, K8sResourceExecutor configuration in pipeline settings
Config resourcesWorkspace variables or pipeline variables

Partitions & Materializations

Dagster:
from dagster import DailyPartitionsDefinition, asset

daily_partitions = DailyPartitionsDefinition(start_date="2024-01-01")

@asset(partitions_def=daily_partitions)
def partitioned_asset(context):
    partition_date = context.partition_key
    # Process data for specific partition
    ...
Mage Pro:
  • Use pipeline variables or dynamic blocks for partition logic
  • Configure incremental processing in SQL blocks or Python blocks
  • Use backfill triggers for historical data processing
  • Schedule pipelines with cron expressions for partition-based runs

Scheduling & Sensors

Dagster:
from dagster import schedule, sensor, RunRequest

@schedule(cron_schedule="0 0 * * *", job=my_etl_job)
def daily_schedule(context):
    return RunRequest()

@sensor(job=my_etl_job)
def file_sensor(context):
    if file_exists("new_data.csv"):
        return RunRequest()
Mage Pro:
  • Create a schedule trigger in the pipeline UI
  • Configure cron expression, interval, or event-based triggers
  • Use file triggers for file-based sensors
  • Use event triggers for webhook-based sensors
  • Use the Deployment App to manage deployments across environments (dev, staging, prod)

Secrets & Configuration

Dagster:
from dagster import ConfigurableResource

class MyResource(ConfigurableResource):
    api_key: str

@asset
def use_resource(my_resource: MyResource):
    key = my_resource.api_key
Mage Pro:
  • Use workspace variables or pipeline variables
  • Access via variables dictionary in blocks
  • Built-in secret manager with encryption, or integrate with external secret managers (AWS Secrets Manager, HashiCorp Vault, etc.)
  • Secrets are isolated per workspace and pipeline

Convert Dagster Code with AI Sidekick

Skip the manual rewrites — Mage Pro’s AI Sidekick can automatically convert your Dagster asset and job code into a Mage pipeline with just one prompt.

How to Use It

  1. Click the “Ask AI” button in the top-right corner of the Mage Pro UI.
  2. Paste your Dagster code — including @asset, @op, @job, or asset-based workflows.
  3. Ask: “Convert this Dagster job to a Mage pipeline.”
  4. Sidekick will:
    • Parse the asset/op structure and dependencies
    • Generate the corresponding Mage blocks (data loader, transformer, data exporter)
    • Define block dependencies and scheduling logic
    • Convert Dagster resources to Mage connectors where applicable
    • Optimize the generated code for performance and best practices
  5. Review and insert the generated pipeline directly into your project.

Why Use Sidekick?

  • Faster migration: turn entire jobs into Mage pipelines in seconds
  • Less error-prone: Sidekick understands asset dependencies, partitions, and op types
  • Code optimization: automatically optimizes generated code for performance
  • Context-aware: uses your project setup and prior block structure
  • Fully editable: review, tweak, and insert blocks before saving
👉 Learn more in the AI Sidekick docs.

Tips for Migrating Complex Jobs

Handling Dagster Asset Dependencies

Dagster:
@asset
def parent_asset():
    ...

@asset
def child_asset(parent_asset):
    ...
Mage Pro:
  • Dependencies are automatically inferred from block connections in the UI
  • Use upstream blocks to define data flow
  • Blocks with no dependencies run in parallel automatically

Dagster Partitions

Dagster:
from dagster import DailyPartitionsDefinition

daily_partitions = DailyPartitionsDefinition(start_date="2024-01-01")

@asset(partitions_def=daily_partitions)
def partitioned_asset(context):
    partition_date = context.partition_key
    ...
Mage Pro:
  • Use pipeline variables to pass partition information
  • Configure incremental processing in SQL blocks
  • Use backfill triggers to process historical partitions
  • Schedule pipelines with appropriate cron expressions

Dagster Resources & Configuration

Dagster:
from dagster import ConfigurableResource, asset

class DatabaseResource(ConfigurableResource):
    connection_string: str

@asset
def use_database(database: DatabaseResource):
    conn = database.connection_string
    ...
Mage Pro:
  • Use workspace variables or pipeline variables for configuration
  • Access via variables dictionary in blocks
  • Use data loader/exporter blocks with native connectors for databases
  • Secrets are managed through built-in or external secret managers

Dagster Retries & Error Handling

Dagster:
@asset(retry_policy=RetryPolicy(max_retries=3, delay=60))
def risky_asset():
    ...
Mage Pro:
  • Configure retry settings in block or pipeline configuration
  • Set retry count, delay, and backoff strategy
  • Built-in error handling and alerting

Dagster Caching & Materializations

Dagster:
@asset(
    compute_kind="pandas",
    metadata={"cache": True}
)
def cached_asset():
    ...
Mage Pro:
  • Use block output caching in pipeline settings
  • Configure cache expiration and invalidation rules
  • Preview cached outputs in the UI

After Migration: What You Get with Mage Pro

  • Unified data platform: orchestration + data integration + transformation + streaming in one tool
  • Visual pipeline builder with real-time data previews
  • AI-powered block generation, optimization, and debugging (via AI Sidekick)
  • Git-backed version control and CI/CD with UI-based Deployment App
  • Built-in access controls, audit logs, and workspace isolation
  • Support for SQL, Python, R, streaming, dbt blocks, Delta Lake, Iceberg, and more
  • 200+ native connectors for databases, APIs, and cloud storage
  • Streaming pipelines for real-time data processing
  • Flexible secrets management: built-in secret manager or integrate with external systems (AWS Secrets Manager, Vault, etc.)
  • Auto-scaled executors on Kubernetes or Docker
  • Transparent pricing: usage-based pricing (SaaS) or cluster/workspace license-based pricing (self-hosted)
Dagster excels at asset-based orchestration. But when you need data engineering, visual development, AI assistance, and native data integrationMage Pro is built for modern data teams.
👉 Migrate to Mage Pro Today