Add credentials

  1. Create a new pipeline or open an existing pipeline.
  2. Expand the left side of your screen to view the file browser.
  3. Scroll down and click on a file named io_config.yaml.
  4. Enter the following keys and values under the key named default (you can have multiple profiles, add it under whichever is relevant to you)
version: 0.1.1
default:
  REDSHIFT_DBNAME: ...
  REDSHIFT_HOST: ...
  REDSHIFT_PORT: ...
  REDSHIFT_TEMP_CRED_USER: ...
  REDSHIFT_TEMP_CRED_PASSWORD: ...

When connecting to Redshift Serverless, you can use workgroup-name.account-number.aws-region.redshift-serverless.amazonaws.com as the REDSHIFT_HOST value.


Using SQL block

  1. Create a new pipeline or open an existing pipeline.
  2. Add a data loader, transformer, or data exporter block.
  3. Select SQL.
  4. Under the Data provider dropdown, select Redshift.
  5. Under the Profile dropdown, select default (or the profile you added credentials underneath).
  6. Next to the Save to schema label, enter the schema name you want this block to save data to.
  7. Under the Write policy dropdown, select Replace or Append (please see SQL blocks guide for more information on write policies).
  8. Enter in this test query: SELECT 1.
  9. Run the block.

Using Python block

  1. Create a new pipeline or open an existing pipeline.
  2. Add a data loader, transformer, or data exporter block (the code snippet below is for a data loader).
  3. Select Generic (no template).
  4. Enter this code snippet (note: change the config_profile from default if you have a different profile):
from mage_ai.settings.repo import get_repo_path
from mage_ai.io.config import ConfigFileLoader
from mage_ai.io.redshift import Redshift
from os import path
from pandas import DataFrame

if 'data_loader' not in globals():
    from mage_ai.data_preparation.decorators import data_loader


@data_loader
def load_data_from_redshift(**kwargs) -> DataFrame:
    query = 'SELECT 1'
    config_path = path.join(get_repo_path(), 'io_config.yaml')
    config_profile = 'default'

    with Redshift.with_config(ConfigFileLoader(config_path, config_profile)) as loader:
        return loader.load(query)
  1. Run the block.

  1. Custom types.

To overwrite a column type when running a python export block, simply specify the column name and type in the overwrite_types dict in data exporter config

Here is an example code snippet:

from mage_ai.settings.repo import get_repo_path
from mage_ai.io.config import ConfigFileLoader
from mage_ai.io.redshift import Redshift
from pandas import DataFrame
from os import path

if 'data_exporter' not in globals():
    from mage_ai.data_preparation.decorators import data_exporter


@data_exporter
def export_data_to_redshift(df: DataFrame, **kwargs) -> None:
    """
    Template for exporting data to a Redshift cluster.
    Specify your configuration settings in 'io_config.yaml'.

    Docs: https://docs.mage.ai/design/data-loading#redshift
    """
    table_name = 'your_table_name'
    config_path = path.join(get_repo_path(), 'io_config.yaml')
    config_profile = 'default'
    overwrite_types = {'column_name': 'VARCHAR(255)'}

    with Redshift.with_config(ConfigFileLoader(config_path, config_profile)) as loader:
        loader.export(
            df,
            table_name,
            if_exists='replace',  # Specify resolution policy if table already exists
            overwrite_types=overwrite_types,
        )

Was this page helpful?