Storage
PostgreSQL
Add credentials
- Create a new pipeline or open an existing pipeline.
- Expand the left side of your screen to view the file browser.
- Scroll down and click on a file named
io_config.yaml
. - Enter the following keys and values under the key named
default
(you can have multiple profiles, add it under whichever is relevant to you)
SSH tunneling
If you want to connect to Postgres cluster with ssh tunnel, update the value of POSTGRES_CONNECTION_METHOD
to ssh_tunnel
, and enter the values for keys with prefix POSTGRES_SSH
.
Key | Description | Sample value |
---|---|---|
POSTGRES_SSH_HOST | The host of the intermediate bastion server. | 123.45.67.89 |
POSTGRES_SSH_PORT | The port of the intermediate bastion server. Default value: 22 | 22 |
POSTGRES_SSH_USERNAME | The username used to connect to the bastion server. | username |
POSTGRES_SSH_PASSWORD | (Optional) The password used to connect to the bastion server. It should be set if you authenticate with the bastion server with password. | password |
POSTGRES_SSH_PKEY | (Optional) The path to the private key used to connect to the bastion server. It should be set if you authenticate with the bastion server with private key. | /path/to/private/key |
Using SQL block
- Create a new pipeline or open an existing pipeline.
- Add a data loader, transformer, or data exporter block.
- Select
SQL
. - Under the
Data provider
dropdown, selectPostgreSQL
. - Under the
Profile
dropdown, selectdefault
(or the profile you added credentials underneath). - Next to the
Save to schema
label, enter the schema name you want this block to save data to. - Under the
Write policy
dropdown, selectReplace
orAppend
(please see SQL blocks guide for more information on write policies). - Enter in this test query:
SELECT 1
. - Run the block.
Using Python block
- Create a new pipeline or open an existing pipeline.
- Add a data loader, transformer, or data exporter block (the code snippet below is for a data loader).
- Select
Generic (no template)
. - Enter this code snippet (note: change the
config_profile
fromdefault
if you have a different profile):
- Run the block.
Export a dataframe
Here is an example code snippet to export a dataframe to Postgres:
- Custom types
To overwrite a column type when running a python export block, simply specify the column name and type in the overwrite_types
dict in data exporter config
Here is an example code snippet:
Method arguments
Field name | Description | Example values |
---|---|---|
allow_reserved_words | Whether to allow using reserved words as column names. | True/False (default: False) |
auto_clean_name | Whether to automatically clean the column name (replace the empty space with underscore, avoid using number as the prefix of the column name) | True/False (default: True) |
case_sensitive | Whether to support case sensitive columns | True/False (default: False) |
cascade_on_drop | Whether to cascade the table drop. | True/False (default: False) |
drop_table_on_replace | Whether to drop the table when “if_exists” param is set to “replace”. | True/False (default: False) |
if_exists | Specify resolution policy if table name already exists | ”fail”/“replace”/“append” (default: “replace”) |
overwrite_types | Overwrite the column types | {'column1': 'INTEGER', 'column2': 'VARCHAR'} |
unique_conflict_method | How to handle the conflict on unique constrants. | ‘UPDATE’ (default: None) |
unique_constraints | The unique constraints of the table. | [‘col1’, ‘col2’] (default: None) |
Was this page helpful?