dbt models


Run

  1. Under the data loader block you just added, click the button dbt model, then click the option All models.

  2. In the dbt project name input field, enter the name of the dbt project that contains the models you want to build and run (e.g. demo).

  3. In the dbt profile target input field, enter the name of the dbt connection profile (e.g. dev) that you want to use when running the selected dbt models.

  4. In the text area of the code block, write the models you want to select or exclude using dbt’s --select and --exclude flags and syntax.

    For more information on the --select and --exclude syntax, read dbt’s documentation. For example:

Variables

Add additional variables to your dbt command by writing the following in your block’s code:

# other optional dbt command line arguments

--vars '{"key": "value"}'

Interpolate values

Interpolate values in the block’s code using data from:

  1. Upstream block output
  2. Variables
    1. Global variables
    2. Pipeline variables
    3. Runtime variables
  3. Environment variables

Upstream block output

Use the data from 1 or more upstream block’s output by using the block_output function.

block_uuid

The UUID of the upstream block to get data from. If argument isn’t present, data from all upstream blocks will be fetched.

Optional
Typestr
Example'data_loader_block'

parse

A lambda function to parse the data from an upstream block’s output. If the parse argument isn’t present, then the fetched data from the upstream block’s output will be interpolated as is.

Optional
Typefunction
Examplelambda data, variables: data['runtime'] * variables['tries']
Arguments
  • data

    If the block_uuid argument isn’t present, then the 1st argument in the lambda function is a list of objects.

    The list of objects contain the data from an upstream block’s output. The positional order of the data in the list corresponds to the current block’s upstream blocks order.

    For example, if the current block has the following upstream blocks with the following output:

    1. load_api_data: [1, 2, 3]
    2. load_users_data: { 'mage': 'powerful' }

    Then the 1st argument in the lambda function will be the following list:

    [
        [1, 2, 3],
        { 'mage': 'powerful' },
    ]
    
    Optional
    TypeIf block_uuid argument is present, then the type depends on the output from that block. If block_uuid isn’t present, then the type is list.
    Example{ 'mage': 'powerful' }
  • variables A dictionary containing pipeline variables and runtime variables.

    Optional
    Typedict
    Example{ 'fire': 40 }

Example

With block_uuid

--select models/{{ block_output('data_loader_block') }}.sql
--select models/{{ block_output('data_loader_block', parse=lambda data, variables: data['runtime'] * variables['tries']) }}.sql
--vars '{"user_id": "{{ block_output('load_recent_user', parse=lambda user, _variables: user['id']) }}"}'

Without block_uuid

--select models/{{ block_output() }}.sql
--select models/{{ block_output(parse=lambda outputs, variables: outputs[1]['runtime'] * variables['tries']) }}.sql
--vars '{"user_id": "{{ block_output(parse=lambda outputs, _variables: outputs[0]['id']) }}"}'

Variables

Interpolate values from a dictionary containing keys and values from:

  1. Global variables
  2. Pipeline variables
  3. Runtime variables

Example

--select models/{{ variables('some_var_name') }}.sql
--vars '{"mage": "{{ variables('power') }}"}'

Environment variables

Interpolate values from the environment variables.

Example

--select models/{{ env_var('some_environment_variable_name') }}.sql
--vars '{"environment": "{{ env_var('ENV') }}"}'